An efficient semi-supervised community detection framework in social networks

نویسندگان

  • Zhen Li
  • Yong Gong
  • Zhisong Pan
  • Guyu Hu
چکیده

Community detection is an important tasks across a number of research fields including social science, biology, and physics. In the real world, topology information alone is often inadequate to accurately find out community structure due to its sparsity and noise. The potential useful prior information such as pairwise constraints which contain must-link and cannot-link constraints can be obtained from domain knowledge in many applications. Thus, combining network topology with prior information to improve the community detection accuracy is promising. Previous methods mainly utilize the must-link constraints while cannot make full use of cannot-link constraints. In this paper, we propose a semi-supervised community detection framework which can effectively incorporate two types of pairwise constraints into the detection process. Particularly, must-link and cannot-link constraints are represented as positive and negative links, and we encode them by adding different graph regularization terms to penalize closeness of the nodes. Experiments on multiple real-world datasets show that the proposed framework significantly improves the accuracy of community detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active link selection for efficient semi-supervised community detection

Several semi-supervised community detection algorithms have been proposed recently to improve the performance of traditional topology-based methods. However, most of them focus on how to integrate supervised information with topology information; few of them pay attention to which information is critical for performance improvement. This leads to large amounts of demand for supervised informati...

متن کامل

Community Structure Detection in Complex Networks with Partial Background Information

Constrained clustering has been well-studied in the unsupervised learning society. However, how to encode constraints into community structure detection, within complex networks, remains a challenging problem. In this paper, we propose a semi-supervised learning framework for community structure detection. This framework implicitly encodes the must-link and cannot-link constraints by modifying ...

متن کامل

Thesis Proposal : Online Extremist Community Detection , Analysis , and Intervention

The rise of the Islamic State of Iraq and al-Sham (ISIS) has been watched by millions through the lens of social media. This “crowd” of social media users has given the group broad reach resulting in a massive online support community that is an essential element of their public affairs and resourcing strategies. Other extremist groups have begun to leverage social media as well. Online Extremi...

متن کامل

Design an Efficient Community-based Message Forwarding Method in Mobile Social Networks

Mobile social networks (MSNs) are a special type of Delay tolerant networks (DTNs) in which mobile devices communicate opportunistically to each other. One of the most challenging issues in Mobile Social Networks (MSNs) is to design an efficient message forwarding scheme that has a high performance in terms of delivery ratio, latency and communication cost. There are two different approaches fo...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017